Kennlinien-Skalierung

Kennlinien-Skalierung

Die Kennlinienskalierung wird dazu genutzt um die erfassten Signale in Echtzeit auf der Messkarte zu skalieren. Die Skalierung erfolgt direkt auf dem Signalprozessor der Messkarte und braucht demnach keine Rechnerleistung auf der PC Seite. Die Kennlinienskalierung auf den Messkarten der Multichoice PCI- und USB-Serie ist erst mit der frei geschalteten Option „Online-Linearisierung“ verfügbar. In dem Messprogramm wird die Kennlinienskalierung über Einstellungen des analogen Erfassungsblocks eingestellt. Damit wird eine Liste der Stützstellen an das DSP übergeben, welche die Signalskalierung beschreiben. Dei Skalierung erfolgt jeweils auf dem gesamten eingestellten Spannungsbereich. Die Definition der Stützstellen erfolgt in einer separaten Textdatei, in der die Eckpunkte einfach zeilenweise abgelegt werden.
Um die Skalierung zu ermöglichen, werden jeweils (2 exp. x)+1 Eckpunkte benötigt, wobei 0<x<12 vom=““ anwender=““ gewählt=““ werden=““ kann.<br=““> Werden weniger Koeffizienten gewählt als in der Datei vorhanden sind, so werden die darauf folgenden Werte ignoriert.
Die Koeffizientendateien lassen sich sehr komfortabel z.B. mit Excel erstellen und als Textdatei speichern. Als Dezimaltrennzeichen wird der Punkt „.“ verwendet!</x<12>

Ein Beispiel für Koeffizientendatei:

0.0
1.0
5.0
6
10

Als Anzahle der Punkte wird 5 angegeben((2 exp. 2)+1)

In dem Beispiel werden die erfassten Messwerte bei der Einstellung des Eingangsspannungsbereichs von -10 bis +10 wie folgt entsprechend der Definition des Ausgabebereichs skaliert:

-10 bis -5V -> 0 bis 1V
-5   bis 0V -> 1 bis 5V
 0   bis 5V -> 5 bis 6V
 5   bis 10V -> 6 bis 10V

Frequenzmodulation und 24-Bit Pulsweitenmodulation

Frequenzmodulation und 24-Bit Pulsweitenmodulation

Realisierungen in Hardware
Die Multichoice PCI/USB-Serie stellt neue digitale Ausgabearten zur Verfügung. Die PWM- und FM-Schaltmimiken sind in dem FPGA der Messkarte realisiert, so daß dieser Baustein die Steuerungen quasi in Hardware übernimmt. Diese Lösung ermöglicht höhere Aktualisierungsgeschwindigkeiten und bessere Stabilität der Ausgabe, ohne Rechenzeit des Signalprozessors zu beanspruchen.

Völlig neue Möglichkeiten
Die Pulsweitenmodulation und Frequenzmodulation stehen bei einigen Treibern sogar gleichzeitig zur Verfügung, so daß Pulsweite und Frequenz in einem Schaltplan während der Laufzeit parallel modifiziert werden können. Diese parallele Modifikation gibt ermöglicht völlig neue Lösungsansätze für bisherige Probleme wie Ventilsteuerungen oder Prüfstände.

Bessere Auflösung
Weiterhin wurde eine zweite Variante der pulsweitenmodulierten Ausgabe entwickelt, die statt der bisherigen 16 Bit Tiefe mit einer Taktung von 500 kHz eine Tiefe von 24 Bit und einer Taktung von 10 MHz. Die Genauigkeit der PWM-Ausgabe wurde dadurch erheblich erhöht. Weiterhin reicht das Frequenzspektrum nun von 0,6 Hz bis zu 5 MHz.

Frequenzmodulation als kostenfreier Bonus
Als dritte Neuerung wurde eine Frequenzmodulation entwickelt. Diese verhält sich wie eine pulsweitenmodulierte Ausgabe mit variable Frequenz und vorgegebenem Puls-Pausen-Verhältnis.

Die PWM moduliert die Pulsweite eines Rechtecksignals mit konstanter Periodendauer. Dabei wird die Pulsweite in Prozent der Periodendauer angegeben. Ist die Pulsweite 0%, so ist der Ausgang der PWM immer Low. Ist sie 100%, so ist der Ausgang immer auf High. Bei 50% sind der Low- und Highpegel gleich lang.

PWM / FM

Pulsweitensignal mit a) 0%,   b) 25%,   c) 50%,   d) 75%   und   e) 100%

Frequenzmodulation (FM)

Bei der FM wird die Periodendauer eines Rechtecksignals moduliert. Das Tastverhältnis bleibt dabei konstant. Die kleinste mögliche Periodendauer ist dabei die maximale mögliche Frequenz und größte mögliche Periodendauer die minimale mögliche Frequenz.

DotNET Assembly MAIv2

Measurement Application Interface .NET (32 und 64 Bit)



Die .NET Version des Measurement Application Interface (MAI) bietet ein durchdachtes objektorientiertes Programmierinterface, durch das Sie für alle Karten einheitlichen Zugriff auf die Goldammer Geräte erhalten.

Sie ist in allen Programmierumgebungen verwendbar, die .NET unterstützen, also sowohl in den Microsoft VisualStudio Sprachen C# und Visual Basic, also auch z.B. in MATLAB, Mathematica, Labview oder Agilent VEE, dabei wird immer dieselbe Syntax verwendet. Ein Wechsel der Programmierumgebung bedeutet also keinerlei erneuten Lernaufwand für Sie und nur minimalen Anpassungsaufwand Ihrer Programme.

Das Measurement Application Interface .NET ist performanceoptimiert und bietet eine Zugriffsgeschwindigkeit, die nativen Programmen gleichkommt, genauso aber die von der .NET Programmierung gewohnte Bequemlichkeit beim Debuggen und alle Code Completion und Intellisense Features des Visual Studios.

Die Erweiterungs DLL MAI.Controls.Configuration enthält NET2.0 Usercontrols, die eine komplett UI-gesteuerte Messungskonfiguration aller Karten ermöglichen, die auch abgespeichert und neu geladen werden kann.

Download des DotNET SDK Archivs mit allen Erweiterungen oder der Beispiele

Beispielsammlung



Beispielsammlungen in VisualBasic, C#, MATLAB, Labview, Mathematica, Agilent VEE.

MAI.Configuration.Controls DLL



Beispiele für MAI.Configuration.Controls DLL. Ebenfalls in C# und VB enthalten.

Digitale Filter

Frequenzselektive digitale Filter

Bedeutung und Anwendung von digitalen Filtern auf abgetastete Signale





1 Digitale Filter



1.1 Das Realtime-Konzept der Goldammer-Meßkarten

Die intelligenten Meßkarten der MC4-PCI-Reihe aus dem Hause Goldammer entlasten den PC bei der Erfassung und Ausgabe von Signalen. Dies schließt eine Echtzeitverarbeitung von erfassten Signalen ein. Diese Echtzeitverarbeitung ist in unseren Treibern integriert und somit sehr einfach zu aktivieren und konfigurieren. Jeder Kanal wird dabei individuell behandelt.

Erfasste Signale können in Echtzeit auf der Karte digital gefiltert werden. Filtern kann notwendig sein, um z.B. das Meßsignal von Störsignale zu isolieren. Dazu werden die Abtastwerte direkt nach der Wandlung einem Filteralgorithmus zugeführt. Die Bestimmung der benötigten Koeffizienten wird mit einer Programmbibliothek durchgeführt, die in unseren Treibern für die gängigsten Messerfassungssystem wie DIAdem, Dasylab und Labview eingebunden ist und erfordert somit keine zusätzlichen Programme. Der Anwender braucht nur die Bedingungen für den Filterentwurf anzugeben. Alle weiteren Arbeiten werden von unseren Treibern automatisch übernommen und ausgeführt.



1.2 Das Abtasttheorem oder Regeln für die Abtastung von Zeitsignalen

Für die Abtastung und die Bearbeitung von abgetasteten Signalen mit digitalen Systemen gelten einige Voraussetzungen. Diese sind:

  • Das Signal muss bandbegrenzt sein, d.h. oberhalb einer Grenzfrequenz müssen alle Frequenzanteile Null sein.
  • Die Abtastfrequenz muss mindestens doppelt so hoch sein wie die Grenzfrequenz des Signals

Diese Regeln werden „SHANNON’sches Abtasttheorem“ genannt. Wird es nicht eingehalten, d.h. die Abtastrate ist nicht mindestens doppelt so groß wie die Grenzfrequenz eines Signals, treten Frequenzanteile im Spektrum auf, die im Signal eigentlich nicht enthalten sind. Dieser Effekt wird „Aliasing“ genannt und entsteht durch Spiegelung von Frequenzen oberhalb der Grenzfrequenz in den Bereich unter der Grenzfrequenz. Die Grenzfrequenz wird „Nyquist-Frequenz“ genannt.



1.3 Wirkungsweise digitaler Filter

Abgetastete Signale sind im Allgemeinen ein Gemisch aus einem Nutzsignal (das Information enthält) und Störsignalen. Die Störsignale können Signale mit anderer Frequenz oder Rauschen sein, die dem Nutzsignal überlagert sind.

In den meisten Fällen sind die Störsignale von erheblich kleinerer Amplitude als das Nutzsignal und brauchen daher nicht berücksichtigt werden. Ist dies nicht der Fall, kann das Nutzsignal vom Störanteil verdeckt und die Informationen des Nutzsignals nicht ausgewertet werden.

Können durch eine geeignete Methode die Störanteile aus dem abgetasteten Signal entfernt werden, stehen die Informationen des Nutzsignals wieder zur Verfügung. Dabei kommen häufig selektive Filter zum Einsatz. Diese Filter machen es sich zu nutze, das die Störanteile im Allgemeinen eine andere Frequenz als das Nutzsignal haben. Sie selektieren aus dem abgetasteten Signal die Frequenzen des Nutzsignals heraus und unterdrücken alle anderen Frequenzanteile.

Die Filterung eines Signals benötigt z.T. sehr viel Rechenzeit. Um den PC von der Filterung des abgetasteten Signals zu entlasten, kann auf Karten der Firma Goldammer das abgetastete Signal gleich gefiltert und dem PC das gefilterte Signal übergeben werden.

Im letzten Teilkapitel sind Performace-Messungen abgebildet. Sie zeigen die mögliche Anzahl von Koeffizienten von FIR-Filtern in Abhängigkeit der Kanalzahl und der Summenabtastrate.



1.4 Filtertypen

Es gibt vier Standardtypen selektiver Filter:

Tiefpässe
hohe Frequenzen werden unterdrückt, tiefe Frequenzen bleiben erhalten

Hochpässe
tiefe Frequenzen werden unterdrückt, hohe Frequenzen bleiben erhalten

Bandpässe
Frequenzen innerhalb eines Bereiches bleiben erhalten, außerhalb werden sie unterdrückt

Bandsperren
Frequenzen innerhalb eines Bereiches werden unterdrückt, außerhalb bleiben sie erhalten

Es gibt darüber hinaus noch Multiband-Filter, die über mehrere Durchlass- und Sperrbereiche verfügen und weitere Filterarten, auf die hier nicht weiter eingegangen wird.

Welcher Filtertyp verwendet werden soll und wie die Durchlass- und Sperrbereiche über den Frequenzgang verteilt werden, wird über Koeffizienten festgelegt und ist damit vom Rechenalgorithmus unabhängig. Die Koeffizienten müssen allerdings für jeden Filteralgorithmus auf unterschiedliche Weise bestimmt werden und sind nicht direkt auf andere Algorithmen übertragbar. Filteralgorithmen bezeichnet man auch als Filterstrukturen

Die häufigsten Strukturen für digitale Filter sind rekursive (IIR-) und nichtrekursive (FIR-) Filter. Beide werden von Goldammer-Meßkarten unterstützt.



1.5 Das Toleranz-Schema

Das Toleranz-Schema ist die Grundlage des Filter-Entwurfs. In diesem Schema werden alle Informationen eingetragen, die der Filterentwurf benötigt.

Die notwendigen Parameter sind:

Grenzfrequenzen           Sie legen die Breite des Übergangsbereiches vom Durchlass- in den Sperrbereich
fest. Je nach Filtertyp ist die Anzahl unterschiedlich.
Für jede Filterflanke wird ein Paar von Grenzfrequenzen benötigt.
Daraus folgt: Tief- und Hochpässe benötigen 2 Grenzfrequenzen, Bandpässe und Bandsperren benötigen 4 Grenzfrequenzen.

Sperrdämpfung              Frequenzen im Sperrbereich sollen mindestens um diesen Wert gedämpft werden.

Durchlassdämpfung       Frequenzen im Durchlassbereich dürfen höchstens um diesem Wert gedämpft
werden.

Manchmal sind zulässige Welligkeiten angegeben. Die zulässigen Welligkeiten lassen sich in Dämpfungen umrechnen und umgekehrt.

Die Breite des Übergangbereiches und die angegebene Dämpfungen legen die Filterordnung fest. Je schmaler der Übergangbereich und je höher die Sperrdämpfung desto größer wird die benötigte Filterordnung und damit der Rechenaufwand des Filters.

Das Toleranzschema kann auf mehrere Arten dargestellt werden. In den meisten Fällen werden die Dämpfungen angegeben.

Bild 1.2 zeigt ein solches Toleranzschema, bei dem die Dämpfungen angegeben werden. In

Bild 1.1 sind die zulässigen Welligkeiten eingetragen. Um das Toleranzschema zu erfüllen, darf der Frequenzgang des Filters die schraffierten Flächen nicht durchqueren. In dem Fall wäre das Toleranzschema verletzt. Um die Filterordnung zu verringern, kann von Fall zu Fall entschieden werden, ob eine geringe Verletzung des Toleranzschemas zulässig ist.

Toleranzschema eines Tiefpasses mit:

Abtastfrequenz:                        1000 Hz
untere Grenzfrequenz:               100 Hz
obere Grenzfrequenz:                200 Hz
zulässige Welligkeit im Durchlassbereich:          dd
zulässige Welligkeit im Sperrberech:                  ds

Bild 1.1: Toleranzschema mit Angabe der Frequenzen und zulässigen Welligkeiten

Statt der Welligkeiten sind im folgendem Toleranzschema die Dämpfungen angegeben. Auch hier gilt: die schraffierten Flächen dürfen vom Frequenzgang des Filters nicht durchlaufen werden.

Bild 1.2: Toleranzschema mit Angabe der Frequenzen und Dämpfungen


1.6 Rekursive Filter (IIR-Filter)

Rekursive Filtern sind Filter, bei denen das Ausgangsignal des Filters auf den Filtereingang zurückgekoppelt wird. Der Name kommt aus dem Englischen und bedeutet „infinite impuls response“ (unendliche Impulsantwort). Durch die Rückkopplung kann die benötigte Filterordnung verringert werden. Nachteilig wirkt sich allerdings die im Allgemeinen nichtlineare Phase aus.

Der Entwurf von IIR-Filtern läßt sich auf den Entwurf analoger Filter zurückführen. Dadurch kann u.a. die Ordnung bestimmt werden, die benötigt wird, um das Toleranzschema zu erfüllen. Ebenso kann der Entwurf eines Hochpass durch eine Transformation auf den Entwurf eines Tiefpasses zurückgeführt werden. Es braucht also nur ein Tiefpass bestimmt werden. Andere Filtertypen (Tiefpass, Hochpass, Bandpass, Bandsperre) lassen sich durch sogenannte Frequenztransformationen aus diesen Tiefpassprototyp berechnen. Eine Begrenzung der Koeffizienten ist nicht erforderlich. Dies ist ein großer Vorteil gegenüber den FIR-Filtern.



1.6.1 Butterworth

Geradliniger Frequenzgang im Durchlass- und Sperrbereich, dadurch keine volle Ausnutzung des Toleranzschema. Der Filtergrad ist deswegen relativ hoch. Die Gruppenlaufzeiten verändern sich kaum über den Frequenzgang.



1.6.2 Chebycheff 1

Geradliniger Frequenzgang nur im Sperrbereich und Welligkeit im Durchlassbereich, dadurch nur eine volle Ausnutzung des Toleranzschema im Durchlassbereich. Durch bessere Ausnutzung des Toleranzschemas ist der Filtergrad kleiner wie bei Butterworthfiltern. Die Gruppenlaufzeiten verändern sich leicht über den Frequenzgang.



1.6.3 Chebycheff 2

Geradliniger Frequenzgang nur im Durchlassbereich und Welligkeit im Sperrbereich, dadurch nur eine volle Ausnutzung des Toleranzschema Sperrbereich. Sonst wie bei Chebycheff 1.



1.6.4 Cauer

Welligkeit im Durchlass- sowie auch im Sperrbereich, dadurch volle Ausnutzung des Toleranzschemas. Der Filtergrad ist kleiner wie bei Chebycheff 1/2 Filtern. Die Gruppenlaufzeiten verändern sich über den Frequenzgang stark.



1.6.5 Bessel

Sehr schlechte Ausnutzung des Toleranzschemas, dadurch höherer Filtergrad als bei allen anderen Filtertypen. Die Gruppenlaufzeiten sind über den gesamten Frequenzgang nahezu konstand.



1.7 Nichtrekursive Filter (FIR-Filter)

Nichtrekursive Filter sind Filter, bei denen das Ausgangssignal des Filters nicht auf den Filtereingang zurückgekoppelt wird. Der Name kommt aus dem Englischen und bedeutet „finite impuls response“ (endliche Impulsantwort). Diese Filtertypen sind immer stabil. Mit ihnen ist es möglich, ohne zusätzlichen Aufwand eine lineare Phase und damit eine konstante Gruppenlaufzeit zu realisieren. Dieser Vorteil gegenüber den IIR-Filtern wird durch eine höhere Filterordnung erkauft.

Der Entwurf von FIR-Filtern läßt sich nicht auf den Entwurf analoger Filter zurückführen. Ebenso kann die Ordnung nicht bestimmt werden, die benötigt wird, um das Toleranzschema zu erfüllen. Dies führt zu Try-And-Fail-Vorgehensweise, bei der das Entwurfsverfahren rekursiv durchgeführt wird. Dabei wird bei jedem Durchgang die Ordnung erhöht und geprüft, ob das Toleranzschema erfüllt wird. Bei Erfüllung wird die Rekursion abgebrochen. Es sind auch keine Transformationen bekannt, durch die man einen Tiefpass in einen anderen Filtertyp, z.B. Hochpass, umwandeln kann. Jedes Entwurfsproblem muss neu gelöst werden.



1.7.1 Entwurfsverfahren

Der Treiber für die Karten aus dem Hause Goldammer unterstützen mehrere Entwurfsverfahren zur Berechnung von Koeffizienten für FIR-Filter. Jedes Entwurfsverfahren kann Tiefpässe, Hochpässe, Bandpässe, und Bandsperren berechnen.

Da die Ordnung eines FIR-Filters nicht absolut berechnet werden kann, ist eine zusätzliche Funktion implementiert, die anhand des Toleranzschemas die Ordnung bestimmt, mit der das Toleranzschema erfüllt wird. Dieses kann allerdings einige Zeit in Anspruch nehmen, da das Entwurfsverfahren rekursiv wiederholt wird, bis die richtige Ordnung gefunden wurde.



1.7.2 Fenster-Methode

Bei der Fenster-Methode wird eine Impulsantwort berechnet. Dazu werden Funktionen benutzt, mit denen die Koeffizienten direkt berechnet werden können. Allerdings ist auf diese Weise nur eine lineare Phase realisierbar.

Die berechnete Impulsantwort wird in ihrer Länge begrenzt. Wird die Impulsantwort abgeschnitten, so spricht man von einer Begrenzung mit einem Rechteckfenster. Dieses führt zu Überschwingungen an Filterflanken. Diese Überschwinger werden mit zunehmenden Abstand zur Flanke kleiner. Eine Erhöhung der Ordnung reduziert die Überschwingeramplituden nicht. Durch Verwendung einer anderen Fensterfunktion, die die Impulsantwort nicht abschneidet, sondern die Koeffizienten an den Rändern immer stärker gegen Null dämpft. Auf diese Weise werden die Überschwinger stark reduziert. Dies wird erkauft durch eine weniger steile Flanke. In (1.7.5) sind die Funktionsverläufe einiger Fensterfunktionen abgebildet.

In den folgenden Bildern sind Frequenzgänge von Filtern mit unterschiedlicher Ordnung dargestellt. Es ist erkennbar, dass die Überschwinger durch Erhöhung der Ordnung nicht verschwinden, sondern sie sich nur in einem kleineren Bereich um die Flanke konzentrieren. Das Hanning-Fenster reduziert die Überschwinger deutlich, allerdings verläuft die Flanke weniger steil.

Bild 1.3: Frequenzgang eines Filter 20.Ordnung entworfen mit der Fenster-Methode. Deutlich zu erkennen ist die Welligkeit durch Verwendung des Rechteckfenster. Das Hanning-Fenster reduziert die Welligkeit, verrringert aber die Flankensteilheit.

Bild 1.4: Frequenzgang eines Filters 60.Ordnung entworfen nach der Fenstermethode. Die Flanke wurde steiler, die Welligkeit nimmt aber nicht ab.



1.7.3 Frequenzabtastung

Die Frequenzabtastung erzeugt aus einem Frequenz- und einem Phasengang eine Impulsantwort mit Hilfe der inversen FFT. Der Vorteil ist hier, das beliebige Frequenz- und Phasengänge realisiert werden können. Der Rechenaufwand wird hauptsächlich durch die FFT bestimmt. Die Filterordnung spielt eine untergeordnete Rolle.

Die hier berechneten Koeffizienten bilden nur eine Näherung der wirklichen Impulsantwort. Die Genauigkeit läßt sich durch Erhöhung der FFT-Punkte vergrößern. Die benötigte Rechenzeit steigt dadurch aber stark an.

Das Problem der Überschwinger an Filterflanken tritt hier auch auf. Durch Verwendung von Fensterfunktionen lassen sich diese Überschwinger auf Kosten einer weniger steilen Flanke verringern.



1.7.4 Remez-Methode

Die Remez-Methode erzeugt Filter-Koeffizienten, die als „equi-ripple-filters“ bekannt sind. Eine andere Bezeichnung ist „optimale FIR-Filter“. Die nach dieser Methode entworfenen Filter sind in der Hinsicht optimal, das sie das Toleranzschema im Durchlass- und Sperrbereich optimal ausfüllen. Dadurch entsteht sowohl im Durchlass- als auch im Sperrbereich eine gleichmäßige Welligkeit (ähnlich dem Tschebyscheff3‑IIR‑Filter). Desweiteren benötigen diese Filter häufig eine geringere Ordnung zur Erfüllung des Toleranzschemas als die oben genannten Entwurfsverfahren.

Ein Nachteil ist der hohe Rechenaufwand. Dafür bietet dieses Entwurfsverfahren eine große Flexibilität.

Bild 1.5: Frequenzgang eines Filters 20.Ordnung entworfen mit der Remez-Methode.

Bild 1.6: Frequenzgang eines Filters 60.Ordnung entworfen mit der Remez-Methode.

Bei der Remez-Methode ist eine Fenster-Funktion nicht notwendig. Mit steigender Ordnung wird die Welligkeit geringer.



1.7.5 Fensterfunktion

Diese Entwurfsmethode erzeugt nur eine Fensterfunktion und übergibt diese der aufrufenden Routine. Die Anzahl der Koeffizienten der Fensterfunktion ist die übergebene Ordnung plus Eins. Es sind über 200 Fensterfunktionen bekannt. Die am häufigsten verwendeten Fensterfunktionen werden von unserem Treiber angeboten.

Im Bild unten sind verschiedene Fensterfunktionen dargestellt.

Bild 1.7: Funktionverlauf einiger Fensterfunktionen



1.8 Vergleich IIR- und FIR-Filter

Ein direkter Vergleich zwischen IIR- und FIR-Filtern ist nicht möglich. Der Benutzer muss in Anhängigkeit der Aufgabe und Randbedingungen entscheiden, welcher Filterart zum Einsatz kommen soll. Dazu müssen die Vorteile und Nachteile der beiden Filterarten gegeneinander abgewägt werden. Die nachfolgende Tabelle soll dazu eine Hilfe bieten:

FIR-Filter IIR-Filter
Vorteile Nachteile Vorteile Nachteile
immer stabil nicht immer stabil, daher Stabilität nachprüfen
konstante (lineare) Gruppenlaufzeit variable (nichtlineare) Gruppenlaufzeit
Ausgangssignal wird nicht verfälscht Ausgangssignal wird verfälscht
endliche Impulsantwort, dadurch Überschwinger an Sprungstellen Unendliche Impulsantwort, dadurch keine Überschwinger an Sprungstellen
höhere Ordnung nötig zur Erfüllung des Toleranzschemas als bei IIR niedrigere Ordnung nötig zur Erfüllung des Toleranzschemas als FIR
große Gruppenlaufzeiten und hoher Rechenaufwand kleinere Gruppenlaufzeiten und niedrigerer Rechenaufwand


1.9 Einstellungen für digitale Filter unter DIAdem

Bild 1.8: Eingabemaske für Filter unter DIAdem

Um Filter zu aktivieren und zu konfigurieren, klicken Sie auf „Gerät..“. Auf dem sich öffnenden Dialog sind oben die verschiedenen Einstellungsmöglichkeiten aufgeführt.

  1. Auf dieser Seite werden die Eingänge konfiguriert.
  2. Hier befinden sich die Einstellungen für den Filter eines Kanals, der unter (3) ausgewählt werden kann. Die Einstellungen auf dieser Seite können für jeden Kanal individuell festgelegt werden.
  3. Hier können Sie einen Kanal auswählen, den Sie konfigurieren möchten. Ist der gewählte Kanal konfiguriert, kann hier gleich der nächste Kanal ausgewählt werden.
  4. An dieser Stelle können Sie für den unter (3) gewählten Kanal festlegen, ob die Abtastwerte dieses Kanals einer Filterung unterzogen werden sollen.
  5. Auswahl der Filterstrukturen (rekursive IIR- oder nichtrekursive FIR-Filter). Die hier gewählte Filterstruktur beeinflusst die Bedeutung und Einträge anderer Eingabefelder.
  6. Festlegung des Filtertyps. Mögliche Einstellungen: Tiefpass, Hochpass, Bandpass, Bandsperre
  7. Grenzfrequenzen der 1.Filterflanke, links die untere, rechts die obere Grenzfrequenz der Flanke. Die Angabe dieser Flanke wird für Tiefpass und Hochpass benötigt. Bei diesen Typen wird die 2.Flanke ingnoriert.
  8. Grenzfrequenzen der 2.Filterflanke, links die untere, rechts die obere Grenzfrequenz der Flanke. Die Angabe dieser Flanke wird zusätzlich für Bandpass und Bandsperre benötigt.
  9. Frequenzen können absolut (in Hz) oder normiert angegeben werden. Normierte Frequenzen haben den Vorteil, das die Abtastfrequenz nicht berücksichtigt werden braucht. Absolute Frequenzen können in normierte Frequenzen umgerechnet werden, wenn die Abtastrate bekannt und gegeben ist. Die Abtastfrequenz wird bei der Einstellung „absolute Frequenzen“ bei der Initialisierung aus dem Taktblock übernommen.
  10. Die Dämpfungen im Durchlass- und im Sperrbereich werden hier angegeben.
    Links die Durchlassdämpfung, rechts die Sperrdämpfung. Die Sperrdämpfung sollte immer größer sein wie die Durchlassdämpfung.
  11. Dämpfungen können auch als Angabe von zulässigen Welligkeiten angegeben werden. Eine Umrechnung wird intern vorgenommen. Hier wird angegeben, ob die Eingabe als Dämpfung oder als Welligkeit interpretiert werden soll.
  12. Hier wird das Entwurfsverfahren angegeben. An dieser Stelle muss unterschieden werden, welche Filterstruktur unter (5) gewählt wurde. Vorteile, Nachteile und Besonderheiten der Entwurfsverfahren sind oben erläutert.
    FIR-Filter Fenstermethode, Frequenzabtastung, Remez-Methode, Fensterfunktion
    IIR-Filter Butterworth, Tschebyscheff 1, Tschebyscheff 2, Cauer
  13. Dieses Feld dient der Auswahl der Fensterfunktion, mit der die Koeffizienten bewertet werden sollen, um die Welligkeiten der Filterflanken zu minimieren.
    Diese Auswahl steht nur für FIR-Filter zur Verfügung.
  14. Ein Klick auf dieses Feld öffnet ein Fenster, in dem der Frequenzgang und die Gruppenlaufzeit des Filters dargestellt wird. So kann sich der Benutzer einen visuellen Überblick über das Verhalten des von ihm definierten Filters verschaffen.
  15. Sind alle für alle Kanäle die Parameter eingestellt, kann hierüber das Konfigurationsfenster geschlossen werden.


1.10 Einstellungen für digitale Filter unter Dasylab

Digitale Filter werden unter Dasylab nur mit dem Extension-Toolkit unterstützt.

Bild 1.9: Eingabemaske für Filter unter Dasylab

Dieses Dialogfeld öffnen Sie durch klicken auf das Feld „Filtereinstellungen“ im Konfigurationsdialog des gewählten Blocks.

  1. An dieser Stelle können Sie für den gewählten Kanal festlegen, ob die Abtastwerte dieses Kanals einer Filterung unterzogen werden sollen.
  2. Auswahl der Filterstrukturen (rekursive IIR- oder nichtrekursive FIR-Filter). Die hier gewählte Filterstruktur beeinflusst die Bedeutung und Einträge anderer Eingabefelder.
  3. Festlegung des Filtertyps. Mögliche Einstellungen: Tiefpass, Hochpass, Bandpass, Bandsperre
  4. Frequenzen können absolut (in Hz) oder normiert angegeben werden. Normierte Frequenzen haben den Vorteil, das die Abtastfrequenz nicht berücksichtigt werden braucht. Absolute Frequenzen können in normierte Frequenzen umgerechnet werden, wenn die Abtastrate bekannt und gegeben ist. Hier werden auch die Grenzfrequenzen der 1. und 2.Filterflanke eingetragen. Links wird jeweils die untere, rechts die obere Grenzfrequenz der Flanke festgelegt. Tiefpässe und Hochpässe benötigen nur die 1.Filterflanke, die 2.Flanke wird ignoriert.’
    Bandpässe und Bandsperren benötigen zusätzlich die Angabe der 2.Filterflanke.
  5. Dämpfungen können auch als Angabe von zulässigen Welligkeiten angegeben werden. Eine Umrechnung wird intern vorgenommen. Hier wird angegeben, ob die Eingabe als Dämpfung oder als Welligkeit interpretiert werden soll. Hier werden auch die Dämpfungen im Durchlass- und im Sperrbereich angegeben. Die Sperrdämpfung sollte immer größer sein wie die Durchlassdämpfung.
  6. Hier wird das Entwurfsverfahren angegeben. An dieser Stelle muss unterschieden werden, welche Filterstruktur unter (5) gewählt wurde. Vorteile, Nachteile und Besonderheiten der Entwurfsverfahren sind oben erläutert.
    FIR-Filter Fenstermethode, Frequenzabtastung, Remez-Methode, Fensterfunktion
    IIR-Filter Butterworth, Tschebyscheff 1, Tschebyscheff 2, Cauer
  7. Dieses Feld dient der Auswahl der Fensterfunktion, mit der die Koeffizienten bewertet werden sollen, um die Welligkeiten der Filterflanken zu minimieren.
    Diese Auswahl steht nur für FIR-Filter zur Verfügung.
  8. Ein Klick auf dieses Feld öffnet ein Fenster, in dem der Frequenzgang und die Gruppenlaufzeit des Filters dargestellt wird. So kann sich der Benutzer einen visuellen Überblick über das Verhalten des von ihm definierten Filters verschaffen.
  9. Sind alle Parameter eingestellt, kann hierüber das Konfigurationsfenster geschlossen werden.


1.11 Leistungsdaten

Die Leistungsmessungen wurden mit folgendem Messystem durchgeführt:

PC:

  • Prozessor: AMD K6-200
  • Speicher: 128MB PC-100 (DIMM)
  • Mainboard: Asus P5A B
  • Chipsatz: ALI
  • Grafikkarte: Diamond Viper AGP (RIVA 128)

Meß-Software:

  • DIAdem 7.02
  • Messung im Hardwaretakt
  • Anzeige durch Graphen
  • DLL-Version: 5.2.0.0
  • DSP-Treiber: 5.2.1.1

Meß-Karte:

  • MC4Light/HS der Firma Goldammer


1.11.1 FIR-Filter

Es lassen sich einige Schlussfolgerungen aus diesen Daten ziehen:

  1.  Bei konstanter Summenabtastrate bleibt die Anzahl der Koeffizienten pro Kanal nahezu konstant.
  2.  Eine Veränderung der Summenabtastrate um den Faktor a erhöht die Anzahl der  Koeffizienten pro Kanal um den Faktor 1/a .
  3.  Die Gesamtanzahl der Koeffizienten steigt mit der Anzahl der Kanäle nahezu linear.
  4.  Die Änderung der Anzahl der Koeffizienten pro Kanal beträgt real 1/ ( a – 1,5%..5% ). Verringerung der Abtastrate erhöht die Anzahl der möglichen Koeffizienten pro Kanal um einen Faktor, der um ca. 1,5%..5% mehr Koeffizienten ermöglicht.

PWM

Frequenzmodulation und 24-Bit Pulsweitenmodulation



Realisierungen in Hardware

Die PWM- und FM-Schaltmimiken sind in dem FPGA der Messkarte realisiert, so daß dieser Baustein die Steuerungen quasi in Hardware übernimmt. Diese Lösung ermöglicht höhere Aktualisierungsgeschwindigkeiten und bessere Stabilität der Ausgabe, ohne Rechenzeit des Signalprozessors zu beanspruchen.

Völlig neue Möglichkeiten

Die Pulsweitenmodulation und Frequenzmodulation stehen bei einigen Treibern sogar gleichzeitig zur Verfügung, so daß Pulsweite und Frequenz in einem Schaltplan während der Laufzeit parallel modifiziert werden können. Diese parallele Modifikation gibt ermöglicht völlig neue Lösungsansätze für bisherige Probleme wie Ventilsteuerungen oder Prüfstände.

Tiefere Datentypen

Weiterhin wurde eine zweite Variante der pulsweitenmodulierten Ausgabe entwickelt, die statt der bisherigen 16 Bit Tiefe mit einer Taktung von 500 kHz eine Tiefe von 24 Bit und einer Taktung von 10 MHz. Die Genauigkeit der PWM-Ausgabe wurde dadurch erheblich erhöht. Weiterhin reicht das Frequenzspektrum nun von 0,6 Hz bis zu 5 MHz.

Frequenzmodulation als kostenfreier Bonus

Als dritte Neuerung wurde eine Frequenzmodulation entwickelt. Diese verhält sich wie eine pulsweitenmodulierte Ausgabe mit variabler Frequenz und vorgegebenem Puls-Pausen-Verhältnis.

Die PWM moduliert die Pulsweite eines Rechtecksignals mit konstanter Periodendauer. Dabei wird die Pulsweite in Prozent der Periodendauer angegeben. Ist die Pulsweite 0%, so ist der Ausgang der PWM immer Low. Ist sie 100%, so ist der Ausgang immer auf High. Bei 50% sind der Low- und Highpegel gleich lang.

Pulsweitensignal mit a) 0%, b) 25%, c) 50%, d) 75% und e) 100%

Frequenzmodulation (FM)

Bei der FM wird die Periodendauer eines Rechtecksignals moduliert. Das Tastverhältnis bleibt dabei konstant. Die kleinste mögliche Periodendauer ist dabei die maximale mögliche Frequenz und größte mögliche Periodendauer die minimale mögliche Frequenz.

Beipsiel für FM und PWM

Das nachfolgende Beispiel zeigt, wie einfach eine gleichzeitige Modulation von Frequenz und Pulsweite sein kann:

Bild 1: Anzeige der Steuerelemente. Eingestellt werden Frequenz durch die Tacho-Anzeige sowie die Pulsweite durch den Schieberegler

Bild 2: Der dem oberen Bild zugeordnete Ablauf. In diesem Beispiel wird immer der erste PWM-Kanal auf Karte 0 beschrieben. Durch Variation dieser Parameter sind mehrkanalige Steuerungen auf unterschiedlichen Karten möglich.

Oversampling

Oversampling



Steigerung der Genaugkeit

Bei stark verrauschten Signalen oder einer erforderlichen hohen Genauigkeit können Standardabweichungen der Messwerterfassung durch mehrfaches Abtasten desselben Signales mit anschliessender mathematischer Mittelwertbildung nahezu eliminiert werden. Das sogenannte Bitrauschen des Wandlers (Wechsel des LSBs des AD-Wandlers) wird durch dieses Verfahren ebenfalls minimiert. Dieser Vorgang wird Oversampling genannt. Die reelle Auflösung eines 16-Bit AD-Wandlers von 13,5 Bit lässt sich durch 16x Oversampling auf 15,5 Bit steigern.

Transparentes Oversampling

Die HS-Versionen der Multichoice PCI-Serie sowie die Quattro-Reihe bieten die Möglichkeit, das Oversampling direkt auf den Messkarten ablaufen zu lassen. Dabei wird anstelle einer einfachen Erfassung der Kanal entsprechend den Einstellungen mehrfach hintereinander abgetastet und anschließend gemittelt. Es wird nur der gemittelte Wert an das Messprogramm übergeben, so daß der Oversampling-Vorgang zum Messprogramm absolut transparent ist. Es kann weiterhin jede gewohnte Funktion im Messprogramm genutzt werden, die auf die Messwerte zugreift.

Keine Mehrkosten

Das Oversampling ist auf allen Messkarten der HS-Reihe sowie auf allen Quattro-Karten ohne Mehrkosten verfügbar.

FFT

Schnelle Fouriertransformation (FFT)





Schnelle Fouriertransformation (FFT)



1.1 Das Realtime-Konzept der Goldammer-Messkarten

Die intelligenten Messkarten der MC4-PCI-Reihe aus dem Hause Goldammer entlasten den PC bei der Erfassung und Ausgabe von Signalen. Dies schließt eine Echtzeitverarbeitung von erfassten Signalen ein. Diese Echtzeitverarbeitung ist in unseren Treibern integriert und verlangt keine zusätzlichen Kapazitäten auf PC. Jeder Kanal kann dabei individuell konfiguriert werden.

Der Vorteil einer FFT auf dem Signalprozessor liegt in der Architektur der Prozessoren sowie in dem reduzierten Datenvolumen. Signalprozessoren können mit optimierten Algorithmen die FFT sehr schnell berechnen. Bei den Goldammer Messkarten erfolgt diese Berechnung in der Idle-Zeit des Prozessors, also wenn der Prozessor keine weiteren Aufgaben zu diesem Zeitpunkt zu erfüllen hat. Das Hostsystem wird deutlich entlastet, da es nur noch die fertigen Messwerte abholen und anzeigen muss. Die Berechnung sind so auf dem Signalprozessor verteilt, dass immer das letzte aktuelle Spektrum der FFT zur Verfügung steht. Weiterhin können natürlich auch die Zeitsignale abgerufen werden.

Erfasste Signale können auf der Karte einer schnellen Fourier-Transformation (im weiteren FFT genannt) unterzogen werden. Signale können damit in ihre Frequenzanteile zerlegt werden.

Der französische Mathematiker Fourier entdeckte, das jedes periodische Signal in viele einzelne sinus- und cosinusförmige Schwingungen zerlegt und auch durch diese nachgebildet werden kann.

Er entwickelte das mathematische Werkzeug der Fourier-Analyse. Mit einer Reihenentwicklung gelang es ihm, jedes periodische Signal durch eine unendliche Summe von mit Koeffizienten bewerteten Sinus- und Cosinus-Schwingungen zu beschreiben. Die Unendlichkeit ist eine mathematische Besonderheit, die in der Realität schwierig zu handhaben ist. Fourier wies nach, das eine endliche Anzahl von Summanden ausreichend ist, um ein periodisches Signal annähernd zu beschreiben. Durch den Abbruch der Reihenentwicklung entspricht die nachgebildete Funktion nicht mehr der Originalfunktion. Durch Verwendung von genügend Summanden kann die Originalfunktion aber beliebig genau angenähert werden.


1.2 Das Abtasttheorem oder Regeln für die Abtastung von Zeitsignalen

Für die Abtastung und die Bearbeitung von abgetasteten Signalen mit digitalen Systemen gelten einige Voraussetzungen. Diese sind:

  • Das Signal muss bandbegrenzt sein, d.h. oberhalb einer Grenzfrequenz müssen alle Frequenzanteile Null sein. Die Grenzfrequenz wird „Nyquist-Frequenz“ genannt.
  • Die Abtastfrequenz muss mindestens doppelt so hoch sein wie die Grenzfrequenz des Signals

Diese Regeln werden „SHANNON’sches Abtasttheorem“ genannt. Wird es nicht eingehalten, d.h. die Abtastrate ist nicht mindestens doppelt so groß wie die größte im Signalenthaltene Frequenz, treten Frequenzanteile im Spektrum auf, die im Signal eigentlich nicht enthalten sind. Dieser Effekt wird „Aliasing“ genannt und entsteht durch Spiegelung von Frequenzen oberhalb der Grenzfrequenz in den Bereich unterhalb der Grenzfrequenz. Dadurch wird sowohl das Frequenzspektrum als auch der zeitliche Verlauf des Signals verfälscht.


1.3 Arbeitsweise der FFT

Während digitale Filter in einer Einzelwertverarbeitung berechnet werden, arbeitet die FFT ausschließlich mit Datenblöcken. In diesen Datenblöcken sind die aktuellsten Abtastwerte enthalten.

Die Karten der MC4-PCI-Serie können Abtastwerte einer FFT unterziehen. Die Berechnung wird mit einen Basis-2-Algorithmus (Cooley-Tuckey) durchgeführt. Daher ist die Anzahl der Abtastwerte auf eine Potenz von 2 begrenzt (z.B. 512, 1024, 2048,…) .

Das Ergebnis ist das Frequenzspektrum des untersuchten Signals. Der FFT-Algorithmus liefert ein komplexes Spektrum. Der Realteil entspricht den Cosinus-Anteilen (), der Imaginärteil den Sinus-Anteilen ().

Durch Betragsbildung wird das Betragsspektrum gebildet.

Weitere Darstellungsarten sind:

  •  RMS-Spektrum
    Das RMS-Spektrum ist der Effektivwert des Betragsspektrums.
  •  Power-Spektrum
    Das Power-Spektrum gibt das Quadrat der Effektivwerte an.

1.4 Beispiel: Rechteck-Signal

Im weiteren wird ein Rechteck-Signal mit einer Signalfrequenz von 100Hz betrachtet. Auf dieses Signal werden verschiedene FIR-Filter angewendet und die resultierenden Frequenzspektren mittels FFT berechnet.

Abbildung 1 zeigt den Zeitverlauf, Abbildung 2 die Frequenzspektren.

Oben ist jeweils das unbearbeitete Signal dargestellt. Neben der Frequenz bei 100Hz (der Grundfrequenz) sind im Rechteck-Signal noch weitere Frequenzen enthalten (Oberwellen). Theoretisch sind unendlich viele Oberwellen im Signal enthalten.

Der mittlere Kurvenverlauf zeigt das Rechteck-Signal nach einer FIR-Filterung mit einer Grenzfrequenz von 550Hz. Frequenzen oberhalb dieser Frequenz werden unterdrückt. Der zeitliche Verlauf weist eine starke Welligkeit auf. Im Frequenzspektrum sind nur noch 3 Frequenzanteile enthalten.

Unten wurde das Rechtecksignal einer Filterung mit der Grenzfrequenz 225Hz unterzogen. Das Filter unterdrückt alle Oberwellen, nur die Grundfrequenz bleibt erhalten. Daher wird aus dem Rechteck ein Sinussignal erzeugt.

Abbildung 1: Zeitverlauf des Rechteck-Signals, oben ohne Filterung, mitte Grenzfrequenz 550Hz, unten Grenzfrequenz 225Hz

Abbildung 2: Frequenzspektren des Rechteck-Signals, oben ohne Filterung, mitte Grenzfrequenz 550Hz, unten Grenzfrequenz 225Hz

Onboard Funktionsgenerator

G0A-4050-0

nboard-Funktionsgenerator: Sinus, Rechteck, Impuls, Rauschen, Dreieck, Sägezahn, Konstante und Download von Dateien.

Onboard Funktionsgenerator


Echtzeit PID-Regler

G0A-4040-0

Echtzeit PID-Regler


Echtzeit FIR- und -IIR-Filter

G0A-4030-0

Filter dienen zur Reduktionen unerwünschter Störanteile in einem Nutzsignal. Die Filter entfernen bestimmte Frequenzanteile des Gesamtsignals und sind so in der Lage, das Ergebnis der Messung zu verbessern. Die Filter können frei eingestellt werden, da die Berechnung der erforderlichen Koeffizienten dynamisch erfolgt, eine Einschränkung auf bestimmte Standardfilter ist nicht vorhanden.

Echtzeit FIR- und -IIR-Filter


© Copyright 2021 - Goldammer GmbH